Enter a problem...
Finite Math Examples
4x3-14x2+25
Step 1
If a polynomial function has integer coefficients, then every rational zero will have the form pq where p is a factor of the constant and q is a factor of the leading coefficient.
p=±1,±5,±25
q=±1,±2,±4
Step 2
Find every combination of ±pq. These are the possible roots of the polynomial function.
±1,±12,±14,±5,±52,±54,±25,±252,±254
Step 3
Substitute the possible roots one by one into the polynomial to find the actual roots. Simplify to check if the value is 0, which means it is a root.
4(52)3-14(52)2+25
Step 4
Step 4.1
Simplify each term.
Step 4.1.1
Apply the product rule to 52.
45323-14(52)2+25
Step 4.1.2
Raise 5 to the power of 3.
412523-14(52)2+25
Step 4.1.3
Raise 2 to the power of 3.
4(1258)-14(52)2+25
Step 4.1.4
Cancel the common factor of 4.
Step 4.1.4.1
Factor 4 out of 8.
41254(2)-14(52)2+25
Step 4.1.4.2
Cancel the common factor.
41254⋅2-14(52)2+25
Step 4.1.4.3
Rewrite the expression.
1252-14(52)2+25
1252-14(52)2+25
Step 4.1.5
Apply the product rule to 52.
1252-145222+25
Step 4.1.6
Raise 5 to the power of 2.
1252-142522+25
Step 4.1.7
Raise 2 to the power of 2.
1252-14(254)+25
Step 4.1.8
Cancel the common factor of 2.
Step 4.1.8.1
Factor 2 out of -14.
1252+2(-7)254+25
Step 4.1.8.2
Factor 2 out of 4.
1252+2⋅-7252⋅2+25
Step 4.1.8.3
Cancel the common factor.
1252+2⋅-7252⋅2+25
Step 4.1.8.4
Rewrite the expression.
1252-7(252)+25
1252-7(252)+25
Step 4.1.9
Combine -7 and 252.
1252+-7⋅252+25
Step 4.1.10
Multiply -7 by 25.
1252+-1752+25
Step 4.1.11
Move the negative in front of the fraction.
1252-1752+25
1252-1752+25
Step 4.2
Combine fractions.
Step 4.2.1
Combine the numerators over the common denominator.
25+125-1752
Step 4.2.2
Simplify the expression.
Step 4.2.2.1
Subtract 175 from 125.
25+-502
Step 4.2.2.2
Divide -50 by 2.
25-25
Step 4.2.2.3
Subtract 25 from 25.
0
0
0
0
Step 5
Since 52 is a known root, divide the polynomial by x-52 to find the quotient polynomial. This polynomial can then be used to find the remaining roots.
4x3-14x2+25x-52
Step 6
Step 6.1
Place the numbers representing the divisor and the dividend into a division-like configuration.
52 | 4 | -14 | 0 | 25 |
Step 6.2
The first number in the dividend (4) is put into the first position of the result area (below the horizontal line).
52 | 4 | -14 | 0 | 25 |
4 |
Step 6.3
Multiply the newest entry in the result (4) by the divisor (52) and place the result of (10) under the next term in the dividend (-14).
52 | 4 | -14 | 0 | 25 |
10 | ||||
4 |
Step 6.4
Add the product of the multiplication and the number from the dividend and put the result in the next position on the result line.
52 | 4 | -14 | 0 | 25 |
10 | ||||
4 | -4 |
Step 6.5
Multiply the newest entry in the result (-4) by the divisor (52) and place the result of (-10) under the next term in the dividend (0).
52 | 4 | -14 | 0 | 25 |
10 | -10 | |||
4 | -4 |
Step 6.6
Add the product of the multiplication and the number from the dividend and put the result in the next position on the result line.
52 | 4 | -14 | 0 | 25 |
10 | -10 | |||
4 | -4 | -10 |
Step 6.7
Multiply the newest entry in the result (-10) by the divisor (52) and place the result of (-25) under the next term in the dividend (25).
52 | 4 | -14 | 0 | 25 |
10 | -10 | -25 | ||
4 | -4 | -10 |
Step 6.8
Add the product of the multiplication and the number from the dividend and put the result in the next position on the result line.
52 | 4 | -14 | 0 | 25 |
10 | -10 | -25 | ||
4 | -4 | -10 | 0 |
Step 6.9
All numbers except the last become the coefficients of the quotient polynomial. The last value in the result line is the remainder.
4x2+-4x-10
Step 6.10
Simplify the quotient polynomial.
4x2-4x-10
4x2-4x-10
Step 7
Step 7.1
Factor 2 out of 4x2.
(x-52)(2(2x2)-4x-10)
Step 7.2
Factor 2 out of -4x.
(x-52)(2(2x2)+2(-2x)-10)
Step 7.3
Factor 2 out of -10.
(x-52)(2(2x2)+2(-2x)+2(-5))
Step 7.4
Factor 2 out of 2(2x2)+2(-2x).
(x-52)(2(2x2-2x)+2(-5))
Step 7.5
Factor 2 out of 2(2x2-2x)+2(-5).
(x-52)(2(2x2-2x-5))
(x-52)(2(2x2-2x-5))
Step 8
Step 8.1
If a polynomial function has integer coefficients, then every rational zero will have the form pq where p is a factor of the constant and q is a factor of the leading coefficient.
p=±1,±25,±5
q=±1,±4,±2
Step 8.2
Find every combination of ±pq. These are the possible roots of the polynomial function.
±1,±0.25,±0.5,±25,±6.25,±12.5,±5,±1.25,±2.5
Step 8.3
Substitute 2.5 and simplify the expression. In this case, the expression is equal to 0 so 2.5 is a root of the polynomial.
Step 8.3.1
Substitute 2.5 into the polynomial.
4⋅2.53-14⋅2.52+25
Step 8.3.2
Raise 2.5 to the power of 3.
4⋅15.625-14⋅2.52+25
Step 8.3.3
Multiply 4 by 15.625.
62.5-14⋅2.52+25
Step 8.3.4
Raise 2.5 to the power of 2.
62.5-14⋅6.25+25
Step 8.3.5
Multiply -14 by 6.25.
62.5-87.5+25
Step 8.3.6
Subtract 87.5 from 62.5.
-25+25
Step 8.3.7
Add -25 and 25.
0
0
Step 8.4
Since 2.5 is a known root, divide the polynomial by 2x-5 to find the quotient polynomial. This polynomial can then be used to find the remaining roots.
4x3-14x2+252x-5
Step 8.5
Divide 4x3-14x2+25 by 2x-5.
Step 8.5.1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of 0.
2x | - | 5 | 4x3 | - | 14x2 | + | 0x | + | 25 |
Step 8.5.2
Divide the highest order term in the dividend 4x3 by the highest order term in divisor 2x.
2x2 | |||||||||||
2x | - | 5 | 4x3 | - | 14x2 | + | 0x | + | 25 |
Step 8.5.3
Multiply the new quotient term by the divisor.
2x2 | |||||||||||
2x | - | 5 | 4x3 | - | 14x2 | + | 0x | + | 25 | ||
+ | 4x3 | - | 10x2 |
Step 8.5.4
The expression needs to be subtracted from the dividend, so change all the signs in 4x3-10x2
2x2 | |||||||||||
2x | - | 5 | 4x3 | - | 14x2 | + | 0x | + | 25 | ||
- | 4x3 | + | 10x2 |
Step 8.5.5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
2x2 | |||||||||||
2x | - | 5 | 4x3 | - | 14x2 | + | 0x | + | 25 | ||
- | 4x3 | + | 10x2 | ||||||||
- | 4x2 |
Step 8.5.6
Pull the next terms from the original dividend down into the current dividend.
2x2 | |||||||||||
2x | - | 5 | 4x3 | - | 14x2 | + | 0x | + | 25 | ||
- | 4x3 | + | 10x2 | ||||||||
- | 4x2 | + | 0x |
Step 8.5.7
Divide the highest order term in the dividend -4x2 by the highest order term in divisor 2x.
2x2 | - | 2x | |||||||||
2x | - | 5 | 4x3 | - | 14x2 | + | 0x | + | 25 | ||
- | 4x3 | + | 10x2 | ||||||||
- | 4x2 | + | 0x |
Step 8.5.8
Multiply the new quotient term by the divisor.
2x2 | - | 2x | |||||||||
2x | - | 5 | 4x3 | - | 14x2 | + | 0x | + | 25 | ||
- | 4x3 | + | 10x2 | ||||||||
- | 4x2 | + | 0x | ||||||||
- | 4x2 | + | 10x |
Step 8.5.9
The expression needs to be subtracted from the dividend, so change all the signs in -4x2+10x
2x2 | - | 2x | |||||||||
2x | - | 5 | 4x3 | - | 14x2 | + | 0x | + | 25 | ||
- | 4x3 | + | 10x2 | ||||||||
- | 4x2 | + | 0x | ||||||||
+ | 4x2 | - | 10x |
Step 8.5.10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
2x2 | - | 2x | |||||||||
2x | - | 5 | 4x3 | - | 14x2 | + | 0x | + | 25 | ||
- | 4x3 | + | 10x2 | ||||||||
- | 4x2 | + | 0x | ||||||||
+ | 4x2 | - | 10x | ||||||||
- | 10x |
Step 8.5.11
Pull the next terms from the original dividend down into the current dividend.
2x2 | - | 2x | |||||||||
2x | - | 5 | 4x3 | - | 14x2 | + | 0x | + | 25 | ||
- | 4x3 | + | 10x2 | ||||||||
- | 4x2 | + | 0x | ||||||||
+ | 4x2 | - | 10x | ||||||||
- | 10x | + | 25 |
Step 8.5.12
Divide the highest order term in the dividend -10x by the highest order term in divisor 2x.
2x2 | - | 2x | - | 5 | |||||||
2x | - | 5 | 4x3 | - | 14x2 | + | 0x | + | 25 | ||
- | 4x3 | + | 10x2 | ||||||||
- | 4x2 | + | 0x | ||||||||
+ | 4x2 | - | 10x | ||||||||
- | 10x | + | 25 |
Step 8.5.13
Multiply the new quotient term by the divisor.
2x2 | - | 2x | - | 5 | |||||||
2x | - | 5 | 4x3 | - | 14x2 | + | 0x | + | 25 | ||
- | 4x3 | + | 10x2 | ||||||||
- | 4x2 | + | 0x | ||||||||
+ | 4x2 | - | 10x | ||||||||
- | 10x | + | 25 | ||||||||
- | 10x | + | 25 |
Step 8.5.14
The expression needs to be subtracted from the dividend, so change all the signs in -10x+25
2x2 | - | 2x | - | 5 | |||||||
2x | - | 5 | 4x3 | - | 14x2 | + | 0x | + | 25 | ||
- | 4x3 | + | 10x2 | ||||||||
- | 4x2 | + | 0x | ||||||||
+ | 4x2 | - | 10x | ||||||||
- | 10x | + | 25 | ||||||||
+ | 10x | - | 25 |
Step 8.5.15
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
2x2 | - | 2x | - | 5 | |||||||
2x | - | 5 | 4x3 | - | 14x2 | + | 0x | + | 25 | ||
- | 4x3 | + | 10x2 | ||||||||
- | 4x2 | + | 0x | ||||||||
+ | 4x2 | - | 10x | ||||||||
- | 10x | + | 25 | ||||||||
+ | 10x | - | 25 | ||||||||
0 |
Step 8.5.16
Since the remander is 0, the final answer is the quotient.
2x2-2x-5
2x2-2x-5
Step 8.6
Write 4x3-14x2+25 as a set of factors.
(2x-5)(2x2-2x-5)=0
(2x-5)(2x2-2x-5)=0
Step 9
If any individual factor on the left side of the equation is equal to 0, the entire expression will be equal to 0.
2x-5=0
2x2-2x-5=0
Step 10
Step 10.1
Set 2x-5 equal to 0.
2x-5=0
Step 10.2
Solve 2x-5=0 for x.
Step 10.2.1
Add 5 to both sides of the equation.
2x=5
Step 10.2.2
Divide each term in 2x=5 by 2 and simplify.
Step 10.2.2.1
Divide each term in 2x=5 by 2.
2x2=52
Step 10.2.2.2
Simplify the left side.
Step 10.2.2.2.1
Cancel the common factor of 2.
Step 10.2.2.2.1.1
Cancel the common factor.
2x2=52
Step 10.2.2.2.1.2
Divide x by 1.
x=52
x=52
x=52
x=52
x=52
x=52
Step 11
Step 11.1
Set 2x2-2x-5 equal to 0.
2x2-2x-5=0
Step 11.2
Solve 2x2-2x-5=0 for x.
Step 11.2.1
Use the quadratic formula to find the solutions.
-b±√b2-4(ac)2a
Step 11.2.2
Substitute the values a=2, b=-2, and c=-5 into the quadratic formula and solve for x.
2±√(-2)2-4⋅(2⋅-5)2⋅2
Step 11.2.3
Simplify.
Step 11.2.3.1
Simplify the numerator.
Step 11.2.3.1.1
Raise -2 to the power of 2.
x=2±√4-4⋅2⋅-52⋅2
Step 11.2.3.1.2
Multiply -4⋅2⋅-5.
Step 11.2.3.1.2.1
Multiply -4 by 2.
x=2±√4-8⋅-52⋅2
Step 11.2.3.1.2.2
Multiply -8 by -5.
x=2±√4+402⋅2
x=2±√4+402⋅2
Step 11.2.3.1.3
Add 4 and 40.
x=2±√442⋅2
Step 11.2.3.1.4
Rewrite 44 as 22⋅11.
Step 11.2.3.1.4.1
Factor 4 out of 44.
x=2±√4(11)2⋅2
Step 11.2.3.1.4.2
Rewrite 4 as 22.
x=2±√22⋅112⋅2
x=2±√22⋅112⋅2
Step 11.2.3.1.5
Pull terms out from under the radical.
x=2±2√112⋅2
x=2±2√112⋅2
Step 11.2.3.2
Multiply 2 by 2.
x=2±2√114
Step 11.2.3.3
Simplify 2±2√114.
x=1±√112
x=1±√112
Step 11.2.4
Simplify the expression to solve for the + portion of the ±.
Step 11.2.4.1
Simplify the numerator.
Step 11.2.4.1.1
Raise -2 to the power of 2.
x=2±√4-4⋅2⋅-52⋅2
Step 11.2.4.1.2
Multiply -4⋅2⋅-5.
Step 11.2.4.1.2.1
Multiply -4 by 2.
x=2±√4-8⋅-52⋅2
Step 11.2.4.1.2.2
Multiply -8 by -5.
x=2±√4+402⋅2
x=2±√4+402⋅2
Step 11.2.4.1.3
Add 4 and 40.
x=2±√442⋅2
Step 11.2.4.1.4
Rewrite 44 as 22⋅11.
Step 11.2.4.1.4.1
Factor 4 out of 44.
x=2±√4(11)2⋅2
Step 11.2.4.1.4.2
Rewrite 4 as 22.
x=2±√22⋅112⋅2
x=2±√22⋅112⋅2
Step 11.2.4.1.5
Pull terms out from under the radical.
x=2±2√112⋅2
x=2±2√112⋅2
Step 11.2.4.2
Multiply 2 by 2.
x=2±2√114
Step 11.2.4.3
Simplify 2±2√114.
x=1±√112
Step 11.2.4.4
Change the ± to +.
x=1+√112
x=1+√112
Step 11.2.5
Simplify the expression to solve for the - portion of the ±.
Step 11.2.5.1
Simplify the numerator.
Step 11.2.5.1.1
Raise -2 to the power of 2.
x=2±√4-4⋅2⋅-52⋅2
Step 11.2.5.1.2
Multiply -4⋅2⋅-5.
Step 11.2.5.1.2.1
Multiply -4 by 2.
x=2±√4-8⋅-52⋅2
Step 11.2.5.1.2.2
Multiply -8 by -5.
x=2±√4+402⋅2
x=2±√4+402⋅2
Step 11.2.5.1.3
Add 4 and 40.
x=2±√442⋅2
Step 11.2.5.1.4
Rewrite 44 as 22⋅11.
Step 11.2.5.1.4.1
Factor 4 out of 44.
x=2±√4(11)2⋅2
Step 11.2.5.1.4.2
Rewrite 4 as 22.
x=2±√22⋅112⋅2
x=2±√22⋅112⋅2
Step 11.2.5.1.5
Pull terms out from under the radical.
x=2±2√112⋅2
x=2±2√112⋅2
Step 11.2.5.2
Multiply 2 by 2.
x=2±2√114
Step 11.2.5.3
Simplify 2±2√114.
x=1±√112
Step 11.2.5.4
Change the ± to -.
x=1-√112
x=1-√112
Step 11.2.6
The final answer is the combination of both solutions.
x=1+√112,1-√112
x=1+√112,1-√112
x=1+√112,1-√112
Step 12
The final solution is all the values that make (2x-5)(2x2-2x-5)=0 true.
x=52,1+√112,1-√112
Step 13
The result can be shown in multiple forms.
Exact Form:
x=52,1+√112,1-√112
Decimal Form:
x=2.5,2.15831239…,-1.15831239…
Mixed Number Form:
x=212,1+√112,1-√112
Step 14